SOLUTION OF THE STEADY-STATE HEAT-CONDUCTION
PROBLEM FOR THIN FILAMENT HEATERS OF
ARBITRARY GEOMETRY

G. M. Tsymbalov and V. S, Koshelev UDC 536.21:621,365.39

The temperature distribution for thin filaments heated by an electric current in vacuo is found,
and simple analytical expressions are derived for calculations of the fundamental variables
characterizing the thermal mode of the heater. The results of calculations according to these
expressions are compared with the experimental data.

Considerable attention has been devoted to the determination of the temperature field of a heater
energized by an electric current in vacuo. Due to appreciable mathematical difficulties, however, a solu-
tion has been obtained for the problem only in the case of a linear heater uncoated with insulation. A sur-
vey of the literature on the solution of the latter problem may be found in [1].

In the present article we give a solution of the system of differential equations describing, in combi-
nation with the boundary conditions, the steady-state temperature field of a filament heater of arbitrary
geometry, In solving the problem we proceed from the following physical picture of the thermal energy
distribution in the heater.

The heater consists of a metal filament (core of the heater), the surface of which is coated with a
thin insulation layer. An electric current of density j passes along the heater core. The Joule heat re-
leased by this process is transmitted from the core to the ocuter surface of the insulation by heat conduction,
From the outer surface of the insulation, thermal energy is radiated into vacuum according to Lambert's
law [2]. Simultaneously, due to self-irradiation of the heater and the emission of radiation from the sur-
rounding surfaces (wall of the vacuum chamber and shields), a radiative flux of density Ejn,-; can impinge
on the heater surface.

The temperature field of a filament heater is most simply determined in the coordinate system {r, o,
z'}. The coordinate axis coincides with the axis of the heater and, depending on the construction of the
latter, can represent either a helical line (for a helical filament) or a set of straight-line segments in dif-
ferent planes (for a folded filament). The coordinates ¢ and r describe the polar angle and distance in the
plane of the filament cross section at the point z'. Consequently, the coordinate system {r, ¢, z'} is
curvilinear and nonorthogonal, Only in the case of a linear filament does this coordinate system coincide
with a conventional cylindrical coordinate system. The heat-conduction equations for the heater core and
the insulation coating, written in the curvilinear coordinate system {r, ¢, z'}, have the following form for
constant values of A and v:
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o(z') is the torsion of the axial line of the filament, k is its curvature, and o 5 is the unit vector normal to
the filament axis.

For thin filaments, for which the values of r are not greater than 0.1 cm and the torsion o, curvature
k, and quantity |d&@,/dz'| are clearly less than ten, it is possible in the expressions for g?% and g to neglect
by comparison with unity terms containing r in the first and higher powers, i.e., to assume that g =~ r? and
g? ~ 1/r?. Also, for a small filament thickness the temperature variation along the radius of the heater
core can be disregarded as a small quantity, The temperature variation along the polar angle ¢, on the
other hand, is of no interest and can also be neglected. Accordingly, Eq. (1) must be averaged over the
variables r and ¢, and Eq. (2) over ¢. Under these conditions Eqs. (1) and (2) reduce to the form

ET o) 2
2 U T R

0% 1 0% 0%

or? r o | o

q@); 0<z <l (6)
1

=0; 0<z <l; R, <r<R, (7)

where ¢(z') is the heat flux from unit lateral surface of the core.

The solution of the differential equations (6)-(7) must satisfy the boundary conditions
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We need to augment these equations with an equation determining the filament current I, which enters into
Eq. (6) as an unknown parameter:

vl =i {pmav, (13)
14

where j = I/wR% and V is the volume of the core.

It is impossible in practice to solve the system of equations (6)-(13) analytically, on account of the
nonlinearity of boundary condition (10). Moreover, we do not know the function Ejy._4(z') in Eq. (10). In
order to evaluate it we need to solve the system of radiation integral equations, However, these difficulties
can be surmounted as follows.

The system of equations (6)-(13) does not differ formally in any way from the system of equations
describing the temperature distribution in a linear filament in a cylindrical coordinate system. It may be
inferred on this basis that the behavior of the temperature distribution along a thin filament radiating in
vacuum will be approximately the same irrespective of its geometric configuration. This inference enables
us to use the results of experimental measurements of the temperature fields of thin linear filaments in
solving the system of equations (6)-(13). A representative experimental curve, borrowed from [3], for the
temperature distribution over the surface of a thin filament is shown in Fig. 1. It is clearly seen that the
major part of the filament surface has a constant temperature ¢ ,. The temperature of the filament varies
from ¢y to T over a small part I' of the filament length (I' << 1/2). This temperature distribution curve
can be described analytically by a trigonometric series:
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TABLE 1. Comparison of the Calculated Values of the Tempera-
ture ¢, and Length ' with the Experimental Data

Heatertype vV LA %0s * K(experi- 18,° K(theore-|1 ", cm(theore-
mental) tical) tical)
White 8,70 0,478 1196 177 1,84
13,6 0,580 1429 1438 1,60
17,4 0,654 1595 1606 1,45
Black 15,9 0,884 1170 1145 0,99
27,7 1,178 1442 1428 0,79
36,7 1,374 1600 1587 0,69
o % F@, I, 8,) = DA, sink 4T, (14)
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z ments of the surface temperature of thin linear filaments,
Fig. 1. Representative distribution of fem- we found the distribution function for the temperature over
perature ¢ (°K) along a thin filament. the surface of a thin filament up to a constant I'. This
function can be used as a new boundary condition in place
of the nonlinear boundary condition (10), putting
g (Rz’ zl) =F (Z,s v, 'ﬂ‘m) (16)

For the determination of the unknown constant I' we use Eq. (13), and we calculate the filament current by
means of the nonlinear boundary condition (10), integrating it first over the filament length. This inter-
change of the boundary conditions makes it possible to find a solution of Eq. (6)-(7) in the form of trigonom-
etric series subject to the condition that p(T) is a linear function of the temperature of the heater core (p
=aT + b):
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wherep,=aTy+b; g= Va/x, and Ly(kpr) and Ky(kpr) are modified Bessel functions of the first and second
kind. The constants ap, by, and cp are readily evaluated from the boundary conditions (8), (9), and (16).
Equation (13) for the determination of ' is reduced to the following by the substitution of T from (17) and
summation of the series:
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A singular feature of the resulting solution is that the temperature distribution function for the fila-
ment does not explicitly contain parameters characterizing the geometry of the filament or the heat-trans-
fer conditions at its outer surface (i. e., the angular emission coefficients, emissivity of the surface, etc.).
All of these quantities enter into the current equation. Their influence on the filament temperature is
therefore accounted for only in terms of the current, which enters into the temperature distribution func-
tion as g parameter.
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T P PR e We conclude with some simple relations for calculat-
f K \z ing the fundamental variables characterizing the thermal
! i mode of the filament; these relations were derived by the
100 \ approximate summation of the trigonometric series entering
i | into (17)-(18).
|
The heat flux across the core cross section at the
ends of the filament (annular logses) is
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Fig. 2. Distributionof temperature T (°K)
over length z' (m) of a thin tungsten fila-
ment: 1) according to experimental data .1 5

[31; 2} calculated from Egs. (14)-(15) and Qe 1f-1= 21R.E,0, Sﬁ“ (Ry, 2)de' = 2nR,e,0,0m ™) (1P1 7 x)(23)
(19). ’ b !

The radiative self-flux from the heater surface is

!

Although the solution presented here was derived for insulation-coated filaments, it can also be used
to describe the temperature field of uncoated thin filaments. For this purpose it is required to put Ry = R,
in all the equations.

For an experimental verification of the relations derived above we compare the results of calculations
of ¢y, and I' according to (15) and (19) with the experimental data. For the latter we use the results of
measurements of the surface temperature of heaters coated with white and black insulation [3]. For the
heaters with a white coating the emissivity of the coating surface is 0.2 or 0.3, and for the heaters with a
black coating it is 0.6 to 0.8. The geometrical dimensions of the white and black heaters were identical:
1=0.255 m; Ry =235.9- 1078 m; Ry, =116.8-107% m. For each type the measurements were performed at
three values of the filament voltage U, so that three values of the currentIand temperature ¢y, were ob-
tained. The results of these measurements are summarized in Table 1.

Values of ¢, and I' calculated according to Egs. (19) and (15) are also given in Table 1. Experimen-
tal values for I' are not given in [3], but in that paper experimental curves are given for the temperature
distribution over the length of black and white heaters, from the form of which it may be inferred that the
value of I' varies between the limits from 2 to 1.5 cm for white heaters and from 1 to 0.7 cm for black
heaters.

The applicability of the relations derived here to uncoated filaments can be demonstrated in a sample
calculation of the temperature field of an uncoated tungsten filament. Its geometrical and electrical param-
eters are as follows: 1 =0.263 m; Ry =35.95- 1078 m; U=8V; I=0.349 A. Graphs of the temperature
field of the uncoated tungsten filament are shown in Fig. 2. Curve 1 was plotted according to the experi-
mental data of [3], and curve 2 was calculated according to Egs. (14)-(15) and (19).

NOTATION
I is the electric current in the heater;
U, A are the filament voltage and thermal conductivity of the heater core;
v is the thermal conductivity of the heater insulation;
Ry, Ry are the radii of the core and insulation coating;
T, $ are thetemperatures of the core and insulation coating at a point;
o is the resistivity of the heater core;
Ty is the temperature of the heater ends;
l is the length of the heater.
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